2. `set` Methods¶

2.1. `set.isdisjoint()`¶

• Return `True` if the `set` has no elements in common with other

• Sets are disjoint if and only if their intersection is the empty `set`.

```{1,2}.isdisjoint({3,4})     # True
```

2.2. `set.issubset()`¶

• Test whether every element in the `set` is in other

```{1,2} <= {3,4}              # False
```
```{1,2} <= {1,2}              # True
{1,2} <= {1,2,3}            # True
```
```{1,2} < {1,2,3}             # True
{1,2} < {1,2}               # False
```

2.3. `set.issuperset()`¶

• Test whether every element in other is in the `set`

```{1,2} > {1,2,3}             # False
{1,2} > {1,2}               # False
{1,2,3} > {1,2}             # True
```
```{1,2} >= {1,2}              # True
{1,2,3} >= {1,2}            # True
```

2.4. `set.union()`¶

• Return a new `set` with elements from the `set` and all others

```{1,2} | {1,2}               # {1, 2}
{1,2,3} | {1,2}             # {1, 2, 3}
{1,2,3} | {1,2,4}           # {1, 2, 3, 4}
{1,2} | {1,3} | {2,4}       # {1, 2, 3, 4}
```

2.5. `set.intersection()`¶

• Return a new `set` with elements common to the `set` and all others

```{1,2} & {2,3}               # {2}
{1,2} & {2,3} & {2,4}       # {2}
{1,2} & {2,3} & {3}         # set()
```

2.6. `set.difference()`¶

• Return a new `set` with elements in the `set` that are not in the others

```{1,2} - {2,3}               # {1}
{1,2} - {2,3} - {3}         # {1}
{1,2} - {1,2,3}             # set()
```

2.7. `set.symmetric_difference()`¶

• Return a new set with elements in either the set or other but not both

```{1,2} ^ {1,2}               # set()
{1,2} ^ {2,3}               # {1, 3}
{1,2} ^ {1,3}               # {2, 3}
```