9.5. OOP Methods and Attributes¶
9.5.1. Rationale¶
Methods are functions in the class
First argument is always instance (
self
)While calling function you never pass
self
Prevents copy-paste code
Improves readability
Improves refactoring
Decomposes bigger problem into smaller chunks
Syntax:
>>> class MyClass:
... def __init__(self):
... self.myfield = 'some value'
...
... def mymethod(self):
... print(self.myfield)
>>>
>>>
>>> my = MyClass()
>>> my.mymethod()
some value
9.5.2. Methods Accessing Fields¶
Methods Accessing Fields:
>>> class Astronaut:
... def __init__(self, name):
... self.name = name
...
... def say_hello(self):
... print(f'My name... {self.name}')
>>>
>>>
>>> jose = Astronaut('José Jiménez')
>>> jose.say_hello()
My name... José Jiménez
self.name
must be defined before accessing:
>>> class Astronaut:
... def say_hello(self):
... print(f'My name... {self.name}')
>>>
>>>
>>> jose = Astronaut()
>>> jose.say_hello()
Traceback (most recent call last):
AttributeError: 'Astronaut' object has no attribute 'name'
9.5.3. Methods Calling Other Methods¶
Methods Calling Other Methods:
>>> class Astronaut:
... def get_name(self):
... return 'José Jiménez'
...
... def say_hello(self):
... name = self.get_name()
... print(f'My name... {name}')
>>>
>>>
>>> jose = Astronaut()
>>> jose.say_hello()
My name... José Jiménez
Methods calling other methods:
>>> class Iris:
... def __init__(self):
... self.sepal_length = 5.1
... self.sepal_width = 3.5
... self.petal_length = 1.4
... self.petal_width = 0.2
...
... def sepal_area(self):
... return self.sepal_length * self.sepal_width
...
... def petal_area(self):
... return self.petal_length * self.petal_width
...
... def total_area(self):
... return self.sepal_area() + self.petal_area()
>>>
>>>
>>> flower = Iris()
>>> print(flower.total_area())
18.13
Since Python 3.7 there is a @dataclass
decorator, which automatically generates __init__()
arguments and fields. More information in OOP Dataclass.
>>> from dataclasses import dataclass
>>>
>>>
>>> @dataclass
... class Iris:
... sepal_length = 5.1
... sepal_width = 3.5
... petal_length = 1.4
... petal_width = 0.2
... species: str = 'Iris'
...
... def sepal_area(self):
... return self.sepal_length * self.sepal_width
...
... def petal_area(self):
... return self.petal_length * self.petal_width
...
... def total_area(self):
... return self.sepal_area() + self.petal_area()
>>>
>>>
>>> flower = Iris()
>>> print(flower.total_area())
18.13
9.5.4. Examples¶
Documentation: https://atlassian-python-api.readthedocs.io
Source Code: https://github.com/atlassian-api/atlassian-python-api
Examples: https://github.com/atlassian-api/atlassian-python-api/tree/master/examples
$ pip install atlassian-python-api
>>> # doctest: +SKIP
... from atlassian import Jira
>>>
>>> # doctest: +SKIP
... jira = Jira(
... url='http://example.com:8080',
... username='myusername',
... password='mypassword')
>>>
>>> JQL = 'project = DEMO AND status IN ("To Do", "In Progress") ORDER BY issuekey'
>>>
>>> # doctest: +SKIP
... result = jira.jql(JQL)
>>> # doctest: +SKIP
... print(result)
>>> # doctest: +SKIP
... from atlassian import Confluence
>>>
>>> # doctest: +SKIP
... confluence = Confluence(
... url='http://example.com:8090',
... username='myusername',
... password='mypassword')
>>>
>>> # doctest: +SKIP
... result = confluence.create_page(
... space='DEMO',
... title='This is the title',
... body='This is the body. You can use <strong>HTML tags</strong>!')
>>>
>>> # doctest: +SKIP
... print(result)
>>> class Point:
... def __init__(self, x, y, z):
... self.x = x
... self.y = y
... self.z = z
...
... def get_coordinates(self):
... return self.x, self.y, self.z
...
... def show(self):
... print(f'Point(x={self.x}, y={self.y}, z={self.z})')
>>>
>>>
>>> point = Point(x=1, y=2, z=3)
>>>
>>> print(point.x)
1
>>> print(point.y)
2
>>> print(point.z)
3
>>>
>>> point.get_coordinates()
(1, 2, 3)
>>>
>>> point.show()
Point(x=1, y=2, z=3)
9.5.5. Assignments¶
"""
* Assignment: OOP Method Sequence
* Complexity: easy
* Lines of code: 9 lines
* Time: 8 min
English:
1. Use data from "Given" section (see below)
2. Create class `Iris` with `features: list[float]` and `label: str` attributes
3. For each row in `DATA` create `Iris` instance with row values
4. Set class attributes at the initialization from positional arguments
5. Create method which sums values of all `features`
6. In `result` gather species and sum of each row
7. Compare result with "Tests" section (see below)
Polish:
1. Użyj danych z sekcji "Given" (patrz poniżej)
2. Stwórz klasę `Iris` z atrybutami `features: list[float]` i `label: str`
3. Dla każdego wiersza w `DATA` twórz instancję `Iris` z danymi z wiersza
4. Ustaw atrybuty klasy przy inicjalizacji z argumentów pozycyjnych
5. Stwórz metodę sumującą wartości wszystkich `features`
6. W `result` zbieraj nazwę gatunku i sumę z każdego wiersza
7. Porównaj wyniki z sekcją "Tests" (patrz poniżej)
Tests:
>>> result # doctest: +NORMALIZE_WHITESPACE
{'setosa': 9.4,
'versicolor': 16.299999999999997,
'virginica': 19.3}
"""
# Given
DATA = [(4.7, 3.2, 1.3, 0.2, 'setosa'),
(7.0, 3.2, 4.7, 1.4, 'versicolor'),
(7.6, 3.0, 6.6, 2.1, 'virginica')]
result = {}
"""
* Assignment: OOP Method Nested
* Complexity: medium
* Lines of code: 17 lines
* Time: 13 min
English:
1. Use data from "Given" section (see below)
2. Define class `Iris`
3. `Iris` has:
a. "Sepal length" type `float`
b. "Sepal width" type `float`
c. "Petal length" type `float`
d. "Petal width" type `float`
e. "Species" type `str`
4. `Iris` can:
a. Return number of `float` type attributes
b. Return list of all `float` type attributes
c. Return sum of values of all `float` type attributes
d. Return mean of all `float` type attributes
5. Use `self.__dict__` iteration to return values of numeric fields
6. Create `setosa` object with attributes set at the initialization
7. Create `virginica` object with attributes set at the initialization
8. Print sum, mean and species name of each objects
9. Do not use `@dataclass`
10. Compare result with "Tests" section (see below)
Polish:
1. Użyj danych z sekcji "Given" (patrz poniżej)
2. Zdefiniuj klasę `Iris`
3. `Iris` ma:
a. "Sepal length" typu `float`
b. "Sepal width" typu `float`
c. "Petal length" typu `float`
d. "Petal width" typu `float`
e. "Species" typu `str`
4. `Iris` może:
a. Zwrócić liczbę pól typu `float`
b. Zwrócić listę wartości wszystkich pól typu `float`
c. Zwrócić sumę wartości pól typu `float`
d. Zwrócić średnią arytmetyczną wartość pól typu `float`
5. Użyj iterowania po `self.__dict__` do zwrócenia wartości pól numerycznych
6. Stwórz obiekt `setosa` z atrybutami ustawionymi przy inicjalizacji
7. Stwórz obiekt `virginica` z atrybutami ustawionymi przy inicjalizacji
8. Wypisz sumę, średnią oraz nazwę gatunku każdego z obiektów
9. Nie używaj `@dataclass`
10. Porównaj wyniki z sekcją "Tests" (patrz poniżej)
Hints:
* `isinstance(value, float)`
* `self.__dict__.items()`
Tests:
>>> setosa = Iris(5.1, 3.5, 1.4, 0.2, 'setosa')
>>> virginica = Iris(5.8, 2.7, 5.1, 1.9, 'virginica')
>>> setosa.show()
'total=10.20 mean=2.55 setosa'
>>> virginica.show()
'total=15.50 mean=3.88 virginica'
"""
# Given
class Iris:
def __init__(self, sepal_length, sepal_width,
petal_length, petal_width, species):
self.sepal_length = sepal_length
self.sepal_width = sepal_width
self.petal_length = petal_length
self.petal_width = petal_width
self.species = species