5.1. Loop Comprehension¶
5.1.1. Rationale¶
>>> result = []
>>>
>>> for x in range(0,5):
... result.append(x)
>>>
>>> print(result)
[0, 1, 2, 3, 4]
>>> result = [x for x in range(0,5)]
>>>
>>> print(result)
[0, 1, 2, 3, 4]
Syntax:
result = [<RETURN> for <VARIABLE> in <ITERABLE>]result = [<RETURN> for <VARIABLE> in <ITERABLE> if <CONDITION>]result = [<RETURN> for <VARIABLE> in <ITERABLE> for <VARIABLE> in <ITERABLE> if <CONDITION> and <CONDITION> or <CONDITION>]
Convention:
Use shorter variable names
x
is common name
5.1.2. Comprehensions and Generator Expression¶
Comprehensions executes instantly
Generator expression executes lazily
List Comprehension:
>>> list(x for x in range(0,5))
[0, 1, 2, 3, 4]
>>>
>>> [x for x in range(0,5)]
[0, 1, 2, 3, 4]
Set Comprehension:
>>> set(x for x in range(0,5))
{0, 1, 2, 3, 4}
>>>
>>> {x for x in range(0,5)}
{0, 1, 2, 3, 4}
Dict Comprehension:
>>> dict((x,x) for x in range(0,5))
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}
>>>
>>> {x:x for x in range(0,5)}
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}
Tuple Comprehension:
>>> tuple(x for x in range(0,5))
(0, 1, 2, 3, 4)
Generator Expression:
>>> (x for x in range(0,5)) # doctest: +ELLIPSIS
<generator object <genexpr> at 0x...>
>>> _ = list(x for x in range(0,5)) # list comprehension
>>> _ = tuple(x for x in range(0,5)) # tuple comprehension
>>> _ = set(x for x in range(0,5)) # set comprehension
>>> _ = dict((x,x) for x in range(0,5)) # dict comprehension
>>> _ = [x for x in range(0,5)] # list comprehension
>>> _ = (x for x in range(0,5)) # generator expression
>>> _ = {x for x in range(0,5)} # set comprehension
>>> _ = {x:x for x in range(0,5)} # dict comprehension
5.1.3. Comprehensions or Generator Expression¶
>>> data = [x for x in range(0,5)]
>>>
>>> list(data)
[0, 1, 2, 3, 4]
>>> print(data)
[0, 1, 2, 3, 4]
>>> data = (x for x in range(0,5))
>>>
>>> list(data)
[0, 1, 2, 3, 4]
>>> print(data) # doctest: +ELLIPSIS
<generator object <genexpr> at 0x...>
>>> from inspect import isgenerator
>>>
>>>
>>> data = [x for x in range(0,5)]
>>> isgenerator(data)
False
>>> from inspect import isgenerator
>>>
>>>
>>> data = (x for x in range(0,5))
>>> isgenerator(data)
True
Comprehension:
>>> data = [x for x in range(0,10)]
>>>
>>> for x in data: # doctest: +NORMALIZE_WHITESPACE
... print(x, end=' ')
... if x == 3:
... break
0 1 2 3
>>>
>>> for x in data: # doctest: +NORMALIZE_WHITESPACE
... print(x, end=' ')
... if x == 6:
... break
0 1 2 3 4 5 6
>>>
>>> print(list(data))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>>
>>> print(list(data))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Generator:
>>> data = (x for x in range(0,10))
>>>
>>> for x in data: # doctest: +NORMALIZE_WHITESPACE
... print(x, end=' ')
... if x == 3:
... break
0 1 2 3
>>>
>>> for x in data: # doctest: +NORMALIZE_WHITESPACE
... print(x, end=' ')
... if x == 6:
... break
4 5 6
>>>
>>> print(list(data))
[7, 8, 9]
>>>
>>> print(list(data))
[]
5.1.4. List Comprehension¶
Pattern:
>>> result = []
>>>
>>> for x in range(0,5):
... result.append(x)
>>>
>>> print(result)
[0, 1, 2, 3, 4]
List comprehension:
>>> [x for x in range(0,5)]
[0, 1, 2, 3, 4]
>>>
>>> list(x for x in range(0,5))
[0, 1, 2, 3, 4]
Examples:
>>> [x+1 for x in range(0,5)]
[1, 2, 3, 4, 5]
>>>
>>> [x-1 for x in range(0,5)]
[-1, 0, 1, 2, 3]
>>>
>>> [x**2 for x in range(0,5)]
[0, 1, 4, 9, 16]
>>>
>>> [2**x for x in range(0,5)]
[1, 2, 4, 8, 16]
>>> list(x+1 for x in range(0,5))
[1, 2, 3, 4, 5]
>>>
>>> list(x-1 for x in range(0,5))
[-1, 0, 1, 2, 3]
>>>
>>> list(x**2 for x in range(0,5))
[0, 1, 4, 9, 16]
>>>
>>> list(2**x for x in range(0,5))
[1, 2, 4, 8, 16]
5.1.5. Set Comprehension¶
Pattern:
>>> result = set()
>>>
>>> for x in range(0,5):
... result.add(x)
>>>
>>> print(result)
{0, 1, 2, 3, 4}
Set comprehension:
>>> {x for x in range(0,5)}
{0, 1, 2, 3, 4}
>>>
>>> set(x for x in range(0,5))
{0, 1, 2, 3, 4}
Examples:
>>> {x+10 for x in range(0, 5)}
{10, 11, 12, 13, 14}
>>>
>>> set(x+10 for x in range(0, 5))
{10, 11, 12, 13, 14}
5.1.6. Dict Comprehension¶
Pattern:
>>> result = dict()
>>>
>>> for x in range(0,5):
... result.update({x:x})
>>>
>>> print(result)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}
Dict comprehension:
>>> {x:x for x in range(0,5)}
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}
>>>
>>> dict((x,x) for x in range(0,5))
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}
Modify dict key:
>>> {x+10:x for x in range(0,5)}
{10: 0, 11: 1, 12: 2, 13: 3, 14: 4}
>>>
>>> dict((x+10,x) for x in range(0,5))
{10: 0, 11: 1, 12: 2, 13: 3, 14: 4}
Modify dict value:
>>> {x:x+10 for x in range(0,5)}
{0: 10, 1: 11, 2: 12, 3: 13, 4: 14}
>>>
>>> dict((x,x+10) for x in range(0,5))
{0: 10, 1: 11, 2: 12, 3: 13, 4: 14}
Modify dict key and value:
>>> {x+10:x+10 for x in range(0,5)}
{10: 10, 11: 11, 12: 12, 13: 13, 14: 14}
>>>
>>> dict((x+10,x+10) for x in range(0,5))
{10: 10, 11: 11, 12: 12, 13: 13, 14: 14}
5.1.7. Tuple Comprehension¶
Pattern:
>>> result = tuple()
>>>
>>> for x in range(0,5):
... result += (x,)
>>>
>>> print(result)
(0, 1, 2, 3, 4)
Tuple comprehension:
>>> tuple(x for x in range(0,5))
(0, 1, 2, 3, 4)
Generator Expression:
>>> (x for x in range(0,5)) # doctest: +ELLIPSIS
<generator object <genexpr> at 0x...>
Example:
>>> tuple(x+10 for x in range(0,5))
(10, 11, 12, 13, 14)
>>> (x+10 for x in range(0,5)) # doctest: +ELLIPSIS
<generator object <genexpr> at 0x...>
>>> result = (x+10 for x in range(0,5))
>>> tuple(result)
(10, 11, 12, 13, 14)
5.1.8. Appending¶
>>> result = [1, 2, 3]
>>> result += [x for x in range(4,10)]
>>>
>>> print(result)
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> result = [1, 2, 3] + [x for x in range(4,10)]
>>>
>>> print(result)
[1, 2, 3, 4, 5, 6, 7, 8, 9]
5.1.9. Map¶
Applying function to each output element:
>>> [float(x) for x in range(0,5)]
[0.0, 1.0, 2.0, 3.0, 4.0]
Applying function to each output element:
>>> [pow(2,x) for x in range(0,5)]
[1, 2, 4, 8, 16]
Small notation explanation:
>>> *X,y = (5.7, 2.8, 4.1, 1.3, 'versicolor')
>>>
>>> X = [5.7, 2.8, 4.1, 1.3]
>>> y = 'versicolor'
>>>
>>> for x in X:
... print(x)
5.7
2.8
4.1
1.3
>>>
>>> x1 = 5.7
>>> x2 = 2.8
>>> x3 = 4.1
>>> x4 = 1.3
Using list
comprehension for filtering:
>>> DATA = [('Sepal length', 'Sepal width', 'Petal length', 'Petal width', 'Species'),
... (5.8, 2.7, 5.1, 1.9, 'virginica'),
... (5.1, 3.5, 1.4, 0.2, 'setosa'),
... (5.7, 2.8, 4.1, 1.3, 'versicolor'),
... (6.3, 2.9, 5.6, 1.8, 'virginica'),
... (6.4, 3.2, 4.5, 1.5, 'versicolor'),
... (4.7, 3.2, 1.3, 0.2, 'setosa'),
... (7.0, 3.2, 4.7, 1.4, 'versicolor')]
>>>
>>>
>>> [features for *features,label in DATA] # doctest: +NORMALIZE_WHITESPACE
[['Sepal length', 'Sepal width', 'Petal length', 'Petal width'],
[5.8, 2.7, 5.1, 1.9],
[5.1, 3.5, 1.4, 0.2],
[5.7, 2.8, 4.1, 1.3],
[6.3, 2.9, 5.6, 1.8],
[6.4, 3.2, 4.5, 1.5],
[4.7, 3.2, 1.3, 0.2],
[7.0, 3.2, 4.7, 1.4]]
>>>
>>> [tuple(features) for *features,label in DATA] # doctest: +NORMALIZE_WHITESPACE
[('Sepal length', 'Sepal width', 'Petal length', 'Petal width'),
(5.8, 2.7, 5.1, 1.9),
(5.1, 3.5, 1.4, 0.2),
(5.7, 2.8, 4.1, 1.3),
(6.3, 2.9, 5.6, 1.8),
(6.4, 3.2, 4.5, 1.5),
(4.7, 3.2, 1.3, 0.2),
(7.0, 3.2, 4.7, 1.4)]
>>>
>>> [tuple(X) for *X,y in DATA] # doctest: +NORMALIZE_WHITESPACE
[('Sepal length', 'Sepal width', 'Petal length', 'Petal width'),
(5.8, 2.7, 5.1, 1.9),
(5.1, 3.5, 1.4, 0.2),
(5.7, 2.8, 4.1, 1.3),
(6.3, 2.9, 5.6, 1.8),
(6.4, 3.2, 4.5, 1.5),
(4.7, 3.2, 1.3, 0.2),
(7.0, 3.2, 4.7, 1.4)]
5.1.10. Filter¶
Example 1:
>>> result = []
...
>>> for x in range(0,5):
... if x % 2 == 0:
... result.append(x)
>>>
>>> print(result)
[0, 2, 4]
>>> result = [x for x in range(0,5) if x%2==0]
>>>
>>> print(result)
[0, 2, 4]
Example 2:
>>> DATA = [('Sepal length', 'Sepal width', 'Petal length', 'Petal width', 'Species'),
... (5.8, 2.7, 5.1, 1.9, 'virginica'),
... (5.1, 3.5, 1.4, 0.2, 'setosa'),
... (5.7, 2.8, 4.1, 1.3, 'versicolor'),
... (6.3, 2.9, 5.6, 1.8, 'virginica'),
... (6.4, 3.2, 4.5, 1.5, 'versicolor'),
... (4.7, 3.2, 1.3, 0.2, 'setosa'),
... (7.0, 3.2, 4.7, 1.4, 'versicolor')]
>>>
>>>
>>> [features for *features,label in DATA if label=='setosa'] # doctest: +NORMALIZE_WHITESPACE
[[5.1, 3.5, 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2]]
>>>
>>> [X for *X,y in DATA if y=='setosa'] # doctest: +NORMALIZE_WHITESPACE
[[5.1, 3.5, 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2]]
Using list
comprehension for filtering with more complex expression:
>>> DATA = [('Sepal length', 'Sepal width', 'Petal length', 'Petal width', 'Species'),
... (5.8, 2.7, 5.1, 1.9, 'virginica'),
... (5.1, 3.5, 1.4, 0.2, 'setosa'),
... (5.7, 2.8, 4.1, 1.3, 'versicolor'),
... (6.3, 2.9, 5.6, 1.8, 'virginica'),
... (6.4, 3.2, 4.5, 1.5, 'versicolor'),
... (4.7, 3.2, 1.3, 0.2, 'setosa'),
... (7.0, 3.2, 4.7, 1.4, 'versicolor')]
>>>
>>>
>>> def is_setosa(species):
... if species == 'setosa':
... return True
... else:
... return False
>>>
>>>
>>> [X for *X,y in DATA if is_setosa(y)] # doctest: +NORMALIZE_WHITESPACE
[[5.1, 3.5, 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2]]
5.1.11. Value Leaking¶
Single value leaking:
>>> result = []
>>>
>>> for x in range(0,5):
... result.append(x)
>>>
>>> print(x)
4
>>> result = [x for x in range(0,5)]
>>>
>>> print(x) # doctest: +SKIP
Traceback (most recent call last):
NameError: name 'x' is not defined
Multiple values leaking:
>>> DATA = {'commander': 'Melissa Lewis',
... 'pilot': 'Rick Martinez',
... 'botanist': 'Mark Watney'}
>>>
>>> result = []
>>>
>>> for role, astronaut in DATA.items():
... result.append((role, astronaut))
>>>
>>> print(role)
botanist
>>>
>>> print(astronaut)
Mark Watney
>>> DATA = {'commander': 'Melissa Lewis',
... 'pilot': 'Rick Martinez',
... 'botanist': 'Mark Watney'}
>>>
>>> result = [(role, astronaut) for role, astronaut in DATA.items()]
>>>
>>> print(role) # doctest: +SKIP
Traceback (most recent call last):
NameError: name 'role' is not defined
>>>
>>> print(astronaut) # doctest: +SKIP
Traceback (most recent call last):
NameError: name 'astronaut' is not defined
5.1.12. Nested Loops¶
>>> DATA = {
... 6: ['Doctorate', 'Prof-school'],
... 5: ['Masters', 'Bachelor', 'Engineer'],
... 4: ['HS-grad'],
... 3: ['Junior High'],
... 2: ['Primary School'],
... 1: ['Kindergarten']}
>>>
>>>
>>> result = {}
>>>
>>> for i, titles in DATA.items():
... for title in titles:
... result[title] = str(i)
>>>
>>> print(result) # doctest: +NORMALIZE_WHITESPACE
{'Doctorate': '6',
'Prof-school': '6',
'Masters': '5',
'Bachelor': '5',
'Engineer': '5',
'HS-grad': '4',
'Junior High': '3',
'Primary School': '2',
'Kindergarten': '1'}
>>> DATA = {
... 6: ['Doctorate', 'Prof-school'],
... 5: ['Masters', 'Bachelor', 'Engineer'],
... 4: ['HS-grad'],
... 3: ['Junior High'],
... 2: ['Primary School'],
... 1: ['Kindergarten']}
>>>
>>>
>>> result = {t: str(i) for i, ts in DATA.items() for t in ts}
>>>
>>> result = {title: str(i) for i, titles in DATA.items() for title in titles}
>>>
>>> result = {title: str(i)
... for i, titles in DATA.items()
... for title in titles}
>>>
>>> print(result) # doctest: +NORMALIZE_WHITESPACE
{'Doctorate': '6',
'Prof-school': '6',
'Masters': '5',
'Bachelor': '5',
'Engineer': '5',
'HS-grad': '4',
'Junior High': '3',
'Primary School': '2',
'Kindergarten': '1'}
5.1.13. Nested Comprehensions¶
>>> DATA = ['5.8,2.7,5.1,1.9,virginica',
... '5.1,3.5,1.4,0.2,setosa',
... '5.7,2.8,4.1,1.3,versicolor']
>>>
>>>
>>> result = []
>>>
>>> for line in DATA:
... line = line.split(',')
... result.append(line[0:4])
>>>
>>> print(result) # doctest: +NORMALIZE_WHITESPACE
[['5.8', '2.7', '5.1', '1.9'],
['5.1', '3.5', '1.4', '0.2'],
['5.7', '2.8', '4.1', '1.3']]
>>>
>>> result = [line.split(',')[0:4] for line in DATA]
>>> print(result) # doctest: +NORMALIZE_WHITESPACE
[['5.8', '2.7', '5.1', '1.9'],
['5.1', '3.5', '1.4', '0.2'],
['5.7', '2.8', '4.1', '1.3']]
>>> DATA = ['5.8,2.7,5.1,1.9,virginica',
... '5.1,3.5,1.4,0.2,setosa',
... '5.7,2.8,4.1,1.3,versicolor']
>>>
>>>
>>> result = []
>>>
>>> for line in DATA:
... X = [float(x) for x in line.split(',')[0:4]]
... result.append(X)
>>>
>>> print(result) # doctest: +NORMALIZE_WHITESPACE
[[5.8, 2.7, 5.1, 1.9],
[5.1, 3.5, 1.4, 0.2],
[5.7, 2.8, 4.1, 1.3]]
>>>
>>> result = [[float(x) for x in line.split(',')[0:4]]
... for line in DATA]
>>> print(result) # doctest: +NORMALIZE_WHITESPACE
[[5.8, 2.7, 5.1, 1.9],
[5.1, 3.5, 1.4, 0.2],
[5.7, 2.8, 4.1, 1.3]]
5.1.14. Indent and Whitespaces¶
>>> result = [pow(x,2) for x in range(0,5)]
>>>
>>> result = [pow(x,2)
... for x in range(0,5)]
>>> result = [pow(x, 2) for x in range(0, 5) if x % 2 == 0]
>>>
>>> result = [pow(x,2) for x in range(0,5) if x%2==0]
>>> result = [pow(x,2) for x in range(0,5) if x % 2 == 0]
>>>
>>> result = [pow(x,2)
... for x in range(0,5)
... if x % 2 == 0]
>>>
>>> result = [pow(x,2)
... for x in range(0,5)
... if x % 2 == 0]
>>> DATA = [{'a':1, 'b':2, 'c': 3},
... {'a':1, 'b':2, 'c': 3},
... {'a':1, 'b':2, 'c': 3}]
>>>
>>> result = [value for row in DATA for key, value in row.items()]
>>>
>>> result = [value
... for row in DATA
... for key, value in row.items()]
>>>
>>> result = [value
... for row in DATA
... for key, value in row.items()]
>>>
>>> # doctest: +SKIP
... result = [astronaut | dict(addresses)
... for astronaut in json.loads(DATA)
... for i, address in enumerate(astronaut.pop('addresses'), start=1)
... if (columns := [f'{key}{i}' for key in address.keys()])
... and (addresses := zip(columns, address.values()))]
>>>
>>> # doctest: +SKIP
... result = [astronaut | dict(addresses)
... for astronaut in json.loads(DATA)
... for i, address in enumerate(astronaut.pop('addresses'), start=1)
... if (columns := [f'{key}{i}' for key in address.keys()])
... and (addresses := zip(columns, address.values()))]
5.1.15. Examples¶
Increment and decrement:
>>> [x+1 for x in range(0,5)]
[1, 2, 3, 4, 5]
>>>
>>> [x-1 for x in range(0,5)]
[-1, 0, 1, 2, 3]
Sum:
>>> sum(x for x in range(0,5))
10
>>>
>>> sum(x for x in range(0,5) if x%2==0)
6
Power:
>>> [pow(x,2) for x in range(0,5)]
[0, 1, 4, 9, 16]
>>>
>>> [x**2 for x in range(0,5)]
[0, 1, 4, 9, 16]
>>>
>>> [pow(2,x) for x in range(0,5)]
[1, 2, 4, 8, 16]
>>>
>>> [2**x for x in range(0,5)]
[1, 2, 4, 8, 16]
Even or Odd:
>>> [x for x in range(0,5)]
[0, 1, 2, 3, 4]
>>>
>>> [x%2==0 for x in range(0,5)]
[True, False, True, False, True]
Even or Odd:
>>> result = {}
>>>
>>> for x in range(0,5):
... is_even = (x % 2 == 0)
... result.update({x: is_even})
>>>
>>> print(result)
{0: True, 1: False, 2: True, 3: False, 4: True}
>>> {x: (x%2==0) for x in range(0,5)}
{0: True, 1: False, 2: True, 3: False, 4: True}
Filtering:
>>> DATA = [{'is_astronaut': True, 'name': 'Jan Twardowski'},
... {'is_astronaut': True, 'name': 'Mark Watney'},
... {'is_astronaut': False, 'name': 'José Jiménez'},
... {'is_astronaut': True, 'name': 'Melissa Lewis'},
... {'is_astronaut': False, 'name': 'Alex Vogel'}]
>>>
>>>
>>> astronauts = [person
... for person in DATA
... if person['is_astronaut']]
>>>
>>> print(astronauts) # doctest: +NORMALIZE_WHITESPACE
[{'is_astronaut': True, 'name': 'Jan Twardowski'},
{'is_astronaut': True, 'name': 'Mark Watney'},
{'is_astronaut': True, 'name': 'Melissa Lewis'}]
>>> DATA = [{'is_astronaut': True, 'name': 'Jan Twardowski'},
... {'is_astronaut': True, 'name': 'Mark Watney'},
... {'is_astronaut': False, 'name': 'José Jiménez'},
... {'is_astronaut': True, 'name': 'Melissa Lewis'},
... {'is_astronaut': False, 'name': 'Alex Vogel'}]
>>>
>>>
>>> astronauts = [person['name']
... for person in DATA
... if person['is_astronaut']]
>>>
>>> print(astronauts)
['Jan Twardowski', 'Mark Watney', 'Melissa Lewis']
>>> DATA = [{'is_astronaut': True, 'name': 'Jan Twardowski'},
... {'is_astronaut': True, 'name': 'Mark Watney'},
... {'is_astronaut': False, 'name': 'José Jiménez'},
... {'is_astronaut': True, 'name': 'Melissa Lewis'},
... {'is_astronaut': False, 'name': 'Alex Vogel'}]
>>>
>>>
>>> astronauts = [{'firstname': person['name'].split()[0],
... 'lastname': person['name'].split()[1]}
... for person in DATA
... if person['is_astronaut']]
>>>
>>> print(astronauts) # doctest: +NORMALIZE_WHITESPACE
[{'firstname': 'Jan', 'lastname': 'Twardowski'},
{'firstname': 'Mark', 'lastname': 'Watney'},
{'firstname': 'Melissa', 'lastname': 'Lewis'}]
>>> DATA = [{'is_astronaut': True, 'name': 'Jan Twardowski'},
... {'is_astronaut': True, 'name': 'Mark Watney'},
... {'is_astronaut': False, 'name': 'José Jiménez'},
... {'is_astronaut': True, 'name': 'Melissa Lewis'},
... {'is_astronaut': False, 'name': 'Alex Vogel'}]
>>>
>>>
>>> astronauts = [{'firstname': person['name'].split()[0].capitalize(),
... 'lastname': person['name'].split()[1][0]+'.'}
... for person in DATA
... if person['is_astronaut']]
>>>
>>> print(astronauts) # doctest: +NORMALIZE_WHITESPACE
[{'firstname': 'Jan', 'lastname': 'T.'},
{'firstname': 'Mark', 'lastname': 'W.'},
{'firstname': 'Melissa', 'lastname': 'L.'}]
In this example, using Assignment Expression would be more efficient and readable. More information in Assignment Expression
Reversing dict
keys with values:
>>> DATA = {'a': 1, 'b': 2}
>>>
>>> list(DATA.items()) # doctest: +NORMALIZE_WHITESPACE
[('a', 1),
('b', 2)]
>>>
>>> [(k,v) for k,v in DATA.items()] # doctest: +NORMALIZE_WHITESPACE
[('a', 1),
('b', 2)]
>>>
>>> [(v,k) for k,v in DATA.items()] # doctest: +NORMALIZE_WHITESPACE
[(1, 'a'),
(2, 'b')]
>>>
>>> {v:k for k,v in DATA.items()}
{1: 'a', 2: 'b'}
Value collision while reversing dict
:
>>> DATA = {'a': 1, 'b': 2, 'c': 2}
>>>
>>> {v:k for k,v in DATA.items()}
{1: 'a', 2: 'c'}
5.1.16. Conditional Expression¶
>>> result = ['even' if x % 2 == 0 else 'odd'
... for x in range(0,10)]
>>>
>>> print(result)
['even', 'odd', 'even', 'odd', 'even', 'odd', 'even', 'odd', 'even', 'odd']
>>> result = ['even' if x % 2 == 0 else 'odd'
... for x in range(0,10)
... if x % 3 == 0]
>>>
>>> print(result)
['even', 'odd', 'even', 'odd']
5.1.17. Assignments¶
"""
* Assignment: Idioms Comprehension Create
* Complexity: easy
* Lines of code: 2 lines
* Time: 3 min
English:
1. Use list comprehension
2. Generate `result: list[int]` of even numbers from 5 to 20 (without 20)
3. Compare result with "Tests" section (see below)
Polish:
1. Użyj rozwinięcia listowego
2. Wygeneruj `result: list[int]` parzystych liczb z przedziału 5 do 20 (bez 20)
3. Porównaj wyniki z sekcją "Tests" (patrz poniżej)
Tests:
>>> assert type(result) is list
>>> assert all(type(x) is int for x in result)
>>> result
[6, 8, 10, 12, 14, 16, 18]
"""
# Given
result: list
"""
* Assignment: Idioms Comprehension Months
* Complexity: easy
* Lines of code: 1 lines
* Time: 3 min
English:
1. Use data from "Given" section (see below)
2. Use dict comprehension
3. Convert `MONTH` into dict:
a. Keys: month number
b. Values: month name
4. Month number must be two letter string (zero padded) - `f'{number:02}'`
5. Compare result with "Tests" section (see below)
Polish:
1. Użyj danych z sekcji "Given" (patrz poniżej)
2. Użyj rozwinięcia słownikowego
3. Przekonwertuj `MONTH` w słownik:
a. klucz: numer miesiąca
b. wartość: nazwa miesiąca
4. Numer miesiąca ma być dwuznakowym stringiem (wypełnij zerem) - `f'{number:02}'`
5. Porównaj wyniki z sekcją "Tests" (patrz poniżej)
Tests:
>>> type(result)
<class 'dict'>
>>> '00' not in result
True
>>> '13' not in result
True
>>> result['01'] == 'January'
True
>>> assert all(type(x) is str for x in result.keys())
>>> assert all(type(x) is str for x in result.values())
>>> assert all(len(x) == 2 for x in result.keys())
>>> result # doctest: +NORMALIZE_WHITESPACE
{'01': 'January',
'02': 'February',
'03': 'March',
'04': 'April',
'05': 'May',
'06': 'June',
'07': 'July',
'08': 'August',
'09': 'September',
'10': 'October',
'11': 'November',
'12': 'December'}
"""
# Given
MONTHS = ['January', 'February', 'March', 'April',
'May', 'June', 'July', 'August',
'September', 'October', 'November', 'December']
result: dict
"""
* Assignment: Idioms Comprehension Translate
* Complexity: easy
* Lines of code: 1 lines
* Time: 3 min
English:
1. Use data from "Given" section (see below)
2. Define `result: list`
3. Use list comprehension to iterate over `DATA`
4. If letter is in `PL` then use conversion value as letter
5. Add letter to `result`
6. Redefine `result: str` as a joined `result`
7. Compare result with "Tests" section (see below)
Polish:
1. Użyj danych z sekcji "Given" (patrz poniżej)
2. Zdefiniuj `result: list`
3. Użyj rozwinięcia listowego do iteracji po `DATA`
4. Jeżeli litera jest w `PL` to użyj skonwertowanej wartości jako litera
5. Dodaj literę do `result`
6. Przedefiniuj `result: str` jako złączony `result`
7. Porównaj wyniki z sekcją "Tests" (patrz poniżej)
Tests:
>>> assert type(result) is str
>>> result
'zazolc gesla jazn'
"""
# Given
PL = {'ą': 'a', 'ć': 'c', 'ę': 'e',
'ł': 'l', 'ń': 'n', 'ó': 'o',
'ś': 's', 'ż': 'z', 'ź': 'z'}
DATA = 'zażółć gęślą jaźń'
result: str
"""
* Assignment: Idioms Comprehension Train/Test
* Complexity: medium
* Lines of code: 9 lines
* Time: 13 min
English:
1. Use data from "Given" section (see below)
2. Using List Comprehension split `DATA` into:
a. `features_train: list[tuple]` - 60% of first features in `DATA`
b. `features_test: list[tuple]` - 40% of last features in `DATA`
c. `labels_train: list[str]` - 60% of first labels in `DATA`
d. `labels_test: list[str]` - 40% of last labels in `DATA`
3. In order to do so, calculate pivot point:
a. length of `DATA` times given percent (60% = 0.6)
b. remember, that slice indicies must be `int`, not `float`
c. for example: if dataset has 10 rows, then 6 rows will be for training, and 4 rows for test
4. Compare results with "Tests" section below
Polish:
1. Użyj danych z sekcji "Given" (patrz poniżej)
2. Używając List Comprehension podziel `DATA` na:
a. `features_train: list[tuple]` - 60% pierwszych features w `DATA`
b. `features_test: list[tuple]` - 40% ostatnich features w `DATA`
c. `labels_train: list[str]` - 60% pierwszych labels w `DATA`
d. `labels_test: list[str]` - 40% ostatnich labels w `DATA`
3. Aby to zrobić, wylicz punkt podziału:
a. długość `DATA` razy zadany procent (60% = 0.6)
b. pamiętaj, że indeksy slice muszą być `int` a nie `float`
c. na przykład: if zbiór danych ma 10 wierszy, to 6 wierszy będzie do treningu, a 4 do testów
4. Porównaj wynik z sekcją "Tests" poniżej
Tests:
>>> assert type(features_train) is list
>>> assert type(features_test) is list
>>> assert type(labels_train) is list
>>> assert type(labels_test) is list
>>> assert all(type(x) is tuple for x in features_train), 'features_train: expected type list[tuple]'
>>> assert all(type(x) is tuple for x in features_test), 'features_test: expected type list[tuple]'
>>> assert all(type(x) is str for x in labels_train)
>>> assert all(type(x) is str for x in labels_test)
>>> features_train # doctest: +NORMALIZE_WHITESPACE
[(5.8, 2.7, 5.1, 1.9),
(5.1, 3.5, 1.4, 0.2),
(5.7, 2.8, 4.1, 1.3),
(6.3, 2.9, 5.6, 1.8),
(6.4, 3.2, 4.5, 1.5),
(4.7, 3.2, 1.3, 0.2)]
>>> features_test # doctest: +NORMALIZE_WHITESPACE
[(7.0, 3.2, 4.7, 1.4),
(7.6, 3.0, 6.6, 2.1),
(4.9, 3.0, 1.4, 0.2),
(4.9, 2.5, 4.5, 1.7)]
>>> labels_train
['virginica', 'setosa', 'versicolor', 'virginica', 'versicolor', 'setosa']
>>> labels_test
['versicolor', 'virginica', 'setosa', 'virginica']
"""
# Given
DATA = [('Sepal length', 'Sepal width', 'Petal length', 'Petal width', 'Species'),
(5.8, 2.7, 5.1, 1.9, 'virginica'),
(5.1, 3.5, 1.4, 0.2, 'setosa'),
(5.7, 2.8, 4.1, 1.3, 'versicolor'),
(6.3, 2.9, 5.6, 1.8, 'virginica'),
(6.4, 3.2, 4.5, 1.5, 'versicolor'),
(4.7, 3.2, 1.3, 0.2, 'setosa'),
(7.0, 3.2, 4.7, 1.4, 'versicolor'),
(7.6, 3.0, 6.6, 2.1, 'virginica'),
(4.9, 3.0, 1.4, 0.2, 'setosa'),
(4.9, 2.5, 4.5, 1.7, 'virginica')]
features_train: list
features_test: list
labels_train: list
labels_test: list