5.11. Generators¶
5.11.1. Recap¶
Comprehensions executes instantly
Generators are lazy evaluated
>>> data = [x for x in range(0,5)]
>>>
>>> print(data)
[0, 1, 2, 3, 4]
>>> list(data)
[0, 1, 2, 3, 4]
>>> data = (x for x in range(0,5))
>>>
>>> print(data) # doctest: +ELLIPSIS
<generator object <genexpr> at 0x...>
>>> list(data)
[0, 1, 2, 3, 4]
>>> _ = list(x for x in range(0,5)) # list comprehension
>>> _ = tuple(x for x in range(0,5)) # tuple comprehension
>>> _ = set(x for x in range(0,5)) # set comprehension
>>> _ = dict((x,x) for x in range(0,5)) # dict comprehension
>>> _ = [x for x in range(0,5)] # list comprehension
>>> _ = (x for x in range(0,5)) # generator expression
>>> _ = {x for x in range(0,5)} # set comprehension
>>> _ = {x:x for x in range(0,5)} # dict comprehension
5.11.2. Rationale¶
Generators:
Lazy Evaluated
Sometimes code is executed partially or not executed at all!
If you want each result once (for example in loop)
Cannot rollback or reset
Forgets previous result
Knows only current result
Don't know the next result
Cleared once they are executed
If you need generator evaluated instantly, there is no point in using generators
Comprehension:
Evaluated instantly
Stored in memory until end of a program or freed by
del
If you want to use values more than once
5.11.3. Yield Keyword¶
>>> def myfunc():
... yield 'a'
... yield 'b'
... yield 'c'
>>>
>>>
>>> result = myfunc()
>>>
>>> result # doctest: +ELLIPSIS
<generator object myfunc at 0x...>
>>>
>>> next(result)
'a'
>>> next(result)
'b'
>>> next(result)
'c'
>>> next(result)
Traceback (most recent call last):
StopIteration
5.11.4. Generator Function¶
Function:
>>> def even(data):
... result = []
... for x in data:
... if x % 2 == 0:
... result.append(x)
... return result
>>>
>>>
>>> DATA = [0, 1, 2, 3, 4, 5]
>>>
>>> result = even(DATA)
>>>
>>> print(result)
[0, 2, 4]
Generator:
>>> def even(data):
... for x in data:
... if x % 2 == 0:
... yield x
>>>
>>>
>>> DATA = [0, 1, 2, 3, 4, 5]
>>>
>>> result = even(DATA)
>>>
>>> print(result) # doctest: +ELLIPSIS
<generator object even at 0x...>
>>> list(result)
[0, 2, 4]
5.11.5. Generator Filter¶
>>> DATA = [('Sepal length', 'Sepal width', 'Petal length', 'Petal width', 'Species'),
... (5.8, 2.7, 5.1, 1.9, 'virginica'),
... (5.1, 3.5, 1.4, 0.2, 'setosa'),
... (5.7, 2.8, 4.1, 1.3, 'versicolor'),
... (6.3, 2.9, 5.6, 1.8, 'virginica'),
... (6.4, 3.2, 4.5, 1.5, 'versicolor'),
... (4.7, 3.2, 1.3, 0.2, 'setosa')]
>>>
>>>
>>> def get_values(species):
... result = []
... for row in DATA:
... if row[4] == species:
... result.append(row)
... return result
>>>
>>>
>>> data = get_values('setosa')
>>>
>>> print(data)
[(5.1, 3.5, 1.4, 0.2, 'setosa'), (4.7, 3.2, 1.3, 0.2, 'setosa')]
>>>
>>> for row in data:
... print(row)
(5.1, 3.5, 1.4, 0.2, 'setosa')
(4.7, 3.2, 1.3, 0.2, 'setosa')
>>> DATA = [('Sepal length', 'Sepal width', 'Petal length', 'Petal width', 'Species'),
... (5.8, 2.7, 5.1, 1.9, 'virginica'),
... (5.1, 3.5, 1.4, 0.2, 'setosa'),
... (5.7, 2.8, 4.1, 1.3, 'versicolor'),
... (6.3, 2.9, 5.6, 1.8, 'virginica'),
... (6.4, 3.2, 4.5, 1.5, 'versicolor'),
... (4.7, 3.2, 1.3, 0.2, 'setosa')]
>>>
>>>
>>> def get_values(species):
... for row in DATA:
... if row[4] == species:
... yield row
>>>
>>>
>>> data = get_values('setosa')
>>>
>>> print(data) # doctest: +ELLIPSIS
<generator object get_values at 0x...>
>>>
>>> for row in data:
... print(row)
(5.1, 3.5, 1.4, 0.2, 'setosa')
(4.7, 3.2, 1.3, 0.2, 'setosa')
5.11.6. Itertools¶
Learn more at https://docs.python.org/library/itertools.html
More information in Itertools
from itertools import *
count(start=0, step=1)
cycle(iterable)
repeat(object[, times])
accumulate(iterable[, func, *, initial=None])
chain(*iterables)
compress(data, selectors)
islice(iterable, start, stop[, step])
starmap(function, iterable)
product(*iterables, repeat=1)
permutations(iterable, r=None)
combinations(iterable, r)
combinations_with_replacement(iterable, r)
groupby(iterable, key=None)
5.11.7. Memory Footprint¶
sys.getsizeof(obj)
returns the size of anobj
in bytessys.getsizeof(obj)
callsobj.__sizeof__()
methodsys.getsizeof(obj)
adds an additional garbage collector overhead if theobj
is managed by the garbage collector
>>> from sys import getsizeof
>>>
>>>
>>> gen1 = (x for x in range(0,1))
>>> gen10 = (x for x in range(0,10))
>>> gen100 = (x for x in range(0,100))
>>> gen1000 = (x for x in range(0,1000))
>>>
>>> getsizeof(gen1)
112
>>>
>>> getsizeof(gen10)
112
>>>
>>> getsizeof(gen100)
112
>>>
>>> getsizeof(gen1000)
112
>>> from sys import getsizeof
>>>
>>>
>>> com1 = [x for x in range(0,1)]
>>> com10 = [x for x in range(0,10)]
>>> com100 = [x for x in range(0,100)]
>>> com1000 = [x for x in range(0,1000)]
>>>
>>>
>>> getsizeof(com1)
88
>>>
>>> getsizeof(com10)
184
>>>
>>> getsizeof(com100)
920
>>>
>>> getsizeof(com1000)
8856

Figure 5.14. Source: https://www.askpython.com/python/python-yield-examples¶
5.11.8. Inspection¶
>>> from inspect import isgenerator
>>>
>>>
>>> a = [x for x in range(0,5)]
>>> b = (x for x in range(0,5))
>>>
>>> isgenerator(a)
False
>>> isgenerator(b)
True
>>> from inspect import isgenerator
>>>
>>>
>>> data = range(0, 10)
>>>
>>> isgenerator(data)
False
5.11.9. Introspection¶
>>> data = (x for x in range(0,10))
>>>
>>>
>>> next(data)
0
>>>
>>> data.gi_code # doctest: +ELLIPSIS
<code object <genexpr> at 0x..., file "<...>", line 1>
>>>
>>> data.gi_running
False
>>>
>>> data.gi_frame # doctest: +ELLIPSIS
<frame at 0x..., file '<...>', line 1, code <genexpr>>
>>>
>>> data.gi_frame.f_locals # doctest: +ELLIPSIS
{'.0': <range_iterator object at 0x...>, 'x': 0}
>>>
>>> data.gi_frame.f_code # doctest: +ELLIPSIS
<code object <genexpr> at 0x...0, file "<...>", line 1>
>>>
>>> data.gi_frame.f_lineno
1
>>>
>>> data.gi_frame.f_lasti
8
>>>
>>> data.gi_yieldfrom
5.11.10. Multiple Yields¶
>>> def run():
... for x in range(0, 3):
... yield x
... for y in range(10, 13):
... yield y
>>>
>>>
>>> result = run()
>>>
>>> type(result)
<class 'generator'>
>>>
>>> next(result)
0
>>> next(result)
1
>>> next(result)
2
>>> next(result)
10
>>> next(result)
11
>>> next(result)
12
>>> next(result)
Traceback (most recent call last):
StopIteration
5.11.11. Yield From¶
Since Python 3.3: PEP 380 -- Syntax for Delegating to a Subgenerator
Helps with refactoring generators
Useful for large generators which can be split into smaller ones
Delegation call
yield from
terminates onGeneratorExit
from other functionThe value of the
yield from
expression is the first argument to theStopIteration
exception raised by the iterator when it terminatesReturn expr in a generator causes
StopIteration(expr)
to be raised upon exit from the generator
>>> def generator1():
... for x in range(0, 3):
... yield x
>>>
>>> def generator2():
... for x in range(10, 13):
... yield x
>>>
>>> def run():
... yield from generator1()
... yield from generator2()
>>>
>>>
>>> result = run()
>>>
>>> type(result)
<class 'generator'>
>>>
>>> next(result)
0
>>> next(result)
1
>>> next(result)
2
>>> next(result)
10
>>> next(result)
11
>>> next(result)
12
>>> next(result)
Traceback (most recent call last):
StopIteration
The code is equivalent to itertools.chain()
:
>>> from itertools import chain
>>>
>>>
>>> def generator1():
... for x in range(0, 3):
... yield x
>>>
>>> def generator2():
... for x in range(10, 13):
... yield x
>>>
>>> def run():
... for x in chain(generator1(), generator2()):
... yield x
>>>
>>>
>>> result = run()
>>>
>>> type(result)
<class 'generator'>
>>>
>>> list(result)
[0, 1, 2, 10, 11, 12]
yield from
turns ordinary function, into a delegation call:
>>> def worker():
... return [1, 2, 3]
>>>
>>> def run():
... yield from worker()
>>>
>>>
>>> result = run()
>>>
>>> next(result)
1
>>> next(result)
2
>>> next(result)
3
>>> next(result)
Traceback (most recent call last):
StopIteration
>>> def worker():
... return [x for x in range(0,3)]
>>>
>>> def run():
... yield from worker()
>>>
>>>
>>> result = run()
>>>
>>> next(result)
0
>>> next(result)
1
>>> next(result)
2
>>> next(result)
Traceback (most recent call last):
StopIteration
yield from with sequences:
>>> def run():
... yield from [0, 1, 2]
>>>
>>>
>>> result = run()
>>>
>>> type(result)
<class 'generator'>
>>>
>>> next(result)
0
>>> next(result)
1
>>> next(result)
2
>>> next(result)
Traceback (most recent call last):
StopIteration
yield from with comprehensions:
>>> def run():
... yield from [x for x in range(0,3)]
>>>
>>>
>>> result = run()
>>>
>>> type(result)
<class 'generator'>
>>>
>>> next(result)
0
>>> next(result)
1
>>> next(result)
2
>>> next(result)
Traceback (most recent call last):
StopIteration
yield from
with generator expressions:
>>> def run():
... yield from (x for x in range(0,3))
>>>
>>>
>>> result = run()
>>>
>>> type(result)
<class 'generator'>
>>>
>>> next(result)
0
>>> next(result)
1
>>> next(result)
2
>>> next(result)
Traceback (most recent call last):
StopIteration
5.11.12. Send¶
.send()
method allows to pass value to the generatordata = yield
will receive this "sent" valueAfter running you have to send
None
value to begin processingSending anything other will raise
TypeError
>>> def run():
... while True:
... data = yield
... print(f'Processing {data}')
>>>
>>>
>>> worker = run()
>>>
>>> type(worker)
<class 'generator'>
>>>
>>> worker.send('hello')
Traceback (most recent call last):
TypeError: can't send non-None value to a just-started generator
>>>
>>> worker.send(None)
>>> worker.send(0)
Processing 0
>>> worker.send(1)
Processing 1
>>> worker.send(2)
Processing 2
>>> worker.send('Mark Watney')
Processing Mark Watney
>>> def run():
... while True:
... data = yield
... print(f'Processing {data}')
>>>
>>>
>>> worker = run()
>>> worker.send(None)
>>>
>>> for x in range(0,3):
... worker.send(x)
Processing 0
Processing 1
Processing 2
>>> def run():
... while True:
... data = yield
... print(f'Processing {data}')
>>>
>>>
>>> worker = run()
>>> worker.send(None)
>>>
>>> for x in range(0,3):
... worker.send(x)
Processing 0
Processing 1
Processing 2
>>> def worker():
... while True:
... data = yield
... print(f'Processing {data}')
>>>
>>> def run(gen):
... gen.send(None)
... while True:
... x = yield
... gen.send(x)
>>>
>>>
>>> result = run(worker())
>>> result.send(None)
>>>
>>> for x in range(0,3):
... result.send(x)
Processing 0
Processing 1
Processing 2
5.11.13. Conclusion¶
Python yield keyword creates a generator function.
It’s useful when the function returns a large amount of data by splitting it into multiple chunks.
We can also send values to the generator using its
send()
function.The
yield from
statement is used to create a sub-iterator from the generator function.Source: https://www.askpython.com/python/python-yield-examples
5.11.14. Assignments¶
"""
* Assignment: Idioms Generator Iris
* Complexity: easy
* Lines of code: 8 lines
* Time: 8 min
English:
1. Use code from "Given" section (see below)
2. Write filter for `DATA` which returns `features` for given `species`
3. Implement solution using function
4. Implement solution using generator and `yield` keyword
5. Compare results of both using `sys.getsizeof()`
6. What will happen if input data will be bigger?
7. Note, that in different Python versions you'll get slightly
different values for getsizeof generator and function:
a. 112 for generator in Python 3.9
b. 112 for generator in Python 3.8
c. 120 for generator in Python 3.7
8. Compare result with "Tests" section (see below)
Polish:
1. Użyj kodu z sekcji "Given" (patrz poniżej)
2. Napisz filtr dla `DATA` zwracający `features` dla danego gatunku `species`
3. Zaimplementuj rozwiązanie wykorzystując funkcję
4. Zaimplementuj rozwiązanie wykorzystując generator i słowo kluczowe `yield`
5. Porównaj wyniki obu używając `sys.getsizeof()`
6. Co się stanie, gdy ilość danych będzie większa?
7. Zwróć uwagę, że w zależności od wersji Python wartości getsizeof
dla funkcji i generatora mogą się nieznaczenie różnić:
a. 112 dla generator w Python 3.9
b. 112 dla generator w Python 3.8
c. 120 dla generator w Python 3.7
8. Porównaj wyniki z sekcją "Tests" (patrz poniżej)
Tests:
>>> from sys import getsizeof
>>> from inspect import isfunction, isgeneratorfunction
>>> assert isfunction(function)
>>> assert isgeneratorfunction(generator)
>>> list(function(DATA, 'setosa'))
[[5.1, 3.5, 1.4, 0.2], [4.7, 3.2, 1.3, 0.2]]
>>> list(generator(DATA, 'setosa'))
[[5.1, 3.5, 1.4, 0.2], [4.7, 3.2, 1.3, 0.2]]
>>> getsizeof(function(DATA, 'setosa')) # Python 3.8: 88
88
>>> getsizeof(function(DATA*10, 'setosa')) # Python 3.8: 256
248
>>> getsizeof(function(DATA*100, 'setosa')) # Python 3.8: 1664
1656
>>> getsizeof(generator(DATA, 'setosa'))
112
>>> getsizeof(generator(DATA*10, 'setosa'))
112
>>> getsizeof(generator(DATA*100, 'setosa'))
112
"""
# Given
DATA = [(5.8, 2.7, 5.1, 1.9, 'virginica'),
(5.1, 3.5, 1.4, 0.2, 'setosa'),
(5.7, 2.8, 4.1, 1.3, 'versicolor'),
(6.3, 2.9, 5.6, 1.8, 'virginica'),
(6.4, 3.2, 4.5, 1.5, 'versicolor'),
(4.7, 3.2, 1.3, 0.2, 'setosa')]
def function(data: list, species: str):
...
def generator(data: list, species: str):
...
"""
* Assignment: Idioms Generator Passwd
* Complexity: medium
* Lines of code: 10 lines
* Time: 8 min
English:
1. Use code from "Given" section (see below)
2. Split `DATA` by lines and then by colon `:`
3. Extract system accounts (users with UID [third field] is less than 1000)
4. Return list of system account logins
5. Implement solution using function
6. Implement solution using generator and `yield` keyword
7. Compare results of both using `sys.getsizeof()`
8. Compare result with "Tests" section (see below)
Polish:
1. Użyj kodu z sekcji "Given" (patrz poniżej)
2. Podziel `DATA` po liniach a następnie po dwukropku `:`
3. Wyciągnij konta systemowe (użytkownicy z UID (trzecie pole) mniejszym niż 1000)
4. Zwróć listę loginów użytkowników systemowych
5. Zaimplementuj rozwiązanie wykorzystując funkcję
6. Zaimplementuj rozwiązanie wykorzystując generator i słowo kluczowe `yield`
7. Porównaj wyniki obu używając `sys.getsizeof()`
8. Porównaj wyniki z sekcją "Tests" (patrz poniżej)
Hint:
* `str.splitlines()`
* `str.strip()`
* `str.split()`
Tests:
>>> from sys import getsizeof
>>> from inspect import isfunction, isgeneratorfunction
>>> assert isfunction(function)
>>> assert isgeneratorfunction(generator)
>>> fun = function(DATA)
>>> gen = generator(DATA)
>>> list(fun)
['root', 'bin', 'daemon', 'adm', 'shutdown', 'halt', 'nobody', 'sshd']
>>> list(gen)
['root', 'bin', 'daemon', 'adm', 'shutdown', 'halt', 'nobody', 'sshd']
>>> getsizeof(fun)
120
>>> getsizeof(gen)
112
"""
# Given
DATA = """root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
nobody:x:99:99:Nobody:/:/sbin/nologin
sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin
watney:x:1000:1000:Mark Watney:/home/watney:/bin/bash
jimenez:x:1001:1001:José Jiménez:/home/jimenez:/bin/bash
ivanovic:x:1002:1002:Иван Иванович:/home/ivanovic:/bin/bash
lewis:x:1003:1002:Melissa Lewis:/home/ivanovic:/bin/bash"""
def function(data: str):
...
def generator(data: str):
...