2.3. Array Generate¶
2.3.1. SetUp¶
>>> import numpy as np
2.3.2. Zeros¶
>>> np.zeros((2, 3))
array([[0., 0., 0.],
[0., 0., 0.]])
>>>
>>> np.zeros(shape=(2, 3))
array([[0., 0., 0.],
[0., 0., 0.]])
>>> a = np.array([[1, 2, 3],
... [4, 5, 6]])
>>>
>>> np.zeros_like(a)
array([[0, 0, 0],
[0, 0, 0]])
>>> a = np.array([[1, 2, 3],
... [4, 5, 6]], float)
>>>
>>> np.zeros_like(a)
array([[0., 0., 0.],
[0., 0., 0.]])
2.3.3. Ones¶
>>> np.ones((3, 2))
array([[1., 1.],
[1., 1.],
[1., 1.]])
>>>
>>> np.ones(shape=(3, 2))
array([[1., 1.],
[1., 1.],
[1., 1.]])
>>> a = np.array([[1, 2, 3],
... [4, 5, 6]])
>>>
>>> np.ones_like(a)
array([[1, 1, 1],
[1, 1, 1]])
>>> a = np.array([[1, 2, 3],
... [4, 5, 6]], float)
>>>
>>> np.ones_like(a)
array([[1., 1., 1.],
[1., 1., 1.]])
2.3.4. Empty¶
Garbage from memory
Will reuse previous if given shape was already created
>>> np.empty((3,4))
array([[ 2.31584178e+077, 1.29073692e-231, 2.96439388e-323, 0.00000000e+000],
[-2.32034891e+077, 2.68678047e+154, 2.18018101e-314, 2.18022275e-314],
[ 0.00000000e+000, 2.18023445e-314, 1.38338381e-322, 9.03690495e-309]])
>>> a = np.array([[1, 2, 3],
... [4, 5, 6]])
>>>
>>> np.empty((2,3))
array([[1., 2., 3.],
[4., 5., 6.]])
>>> a = np.array([[1, 2, 3],
... [4, 5, 6]])
>>>
>>> np.empty_like(a)
array([[1, 2, 3],
[4, 5, 6]])
2.3.5. Full¶
>>> np.full((2, 2), np.inf)
array([[inf, inf],
[inf, inf]])
>>>
>>> np.full((2, 2), 10)
array([[10, 10],
[10, 10]])
2.3.6. Identity¶
>>> np.identity(2)
array([[1., 0.],
[0., 1.]])
>>>
>>> np.identity(3)
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
>>>
>>> np.identity(4, int)
array([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
2.3.7. Recap¶
>>> a = np.zeros(shape=(2,3))
>>> b = np.zeros_like(a)
>>> c = np.ones(shape=(2,3))
>>> d = np.ones_like(a)
>>> e = np.empty(shape=(2,3))
>>> f = np.empty_like(a)
>>> g = np.full(shape=(2, 2), fill_value=np.nan)
>>> h = np.full_like(a, np.nan)
>>> i = np.identity(4)
2.3.8. References¶
2.3.9. Assignments¶
"""
* Assignment: Numpy Create Arange
* Complexity: easy
* Lines of code: 1 lines
* Time: 3 min
English:
1. Create `result: np.ndarray` with even numbers from 0 to 100 (without 100)
2. Numbers must be `float` type
3. Run doctests - all must succeed
Polish:
1. Stwórz `result: np.ndarray` z liczbami parzystymi od 0 do 100 (bez 100)
2. Liczby muszą być typu `float`
3. Uruchom doctesty - wszystkie muszą się powieść
Tests:
>>> import sys; sys.tracebacklimit = 0
>>> assert result is not Ellipsis, \
'Assign result to variable: `result`'
>>> assert type(result) is np.ndarray, \
'Variable `result` has invalid type, expected: np.ndarray'
>>> result
array([ 0., 2., 4., 6., 8., 10., 12., 14., 16., 18., 20., 22., 24.,
26., 28., 30., 32., 34., 36., 38., 40., 42., 44., 46., 48., 50.,
52., 54., 56., 58., 60., 62., 64., 66., 68., 70., 72., 74., 76.,
78., 80., 82., 84., 86., 88., 90., 92., 94., 96., 98.])
"""
import numpy as np
result = ...